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Waves due to a steadily moving source on a 
floating ice plate. Part 2 

By R. M. S. M. SCHULKES, R. J. HOSKING AND A. D. SNEYD 
University of Waikato, Hamilton, New Zealand 

(Received 10 April 1986 and in revised form 26 November 1986) 

This paper extends previous theoretical work on waves in floating ice plates to take 
account of the following effects: (i) compressive stress in the plane of the plate, (ii) 
uniform flow in the underlying water, and (iii) stratification of the underlying water. 
The first two effects are unlikely to be important in practice, causing respectively 
a slight decrease in phase speed and mainly a re-orientation of the wave pattern due 
to a steadily moving source. A two-layer model is used to describe stratification, 
which introduces a new system of slow internal waves associated with the layer 
interface, while the surface flexural waves are only slightly modified. In the case of 
unstratified water there is a minimum speed cmln such that more slowly moving 
sources excite a static rather than a wavelike response in the ice. With stratified water 
there remains a variety of steady wave patterns due to the internal waves, at source 
speeds below cmin. Another important effect of stratification is to greatly increase 
wave drag. For certain source load distributions, internal-wave amplitudes may grow 
until linear theory is no longer applicable. 

1. Introduction 
An earlier paper (Davys, Hosking t Sneyd 1985, hereafter referred to as Paper I), 

discussed flexural wave patterns excited in a floating ice plate by a steadily moving 
load. It was shown that the pattern of these elastic-gravity waves depends on the 
speed of the source, and that the response amplitude, frequency and phase depend 
on the thickness and elastic properties of the ice. The mathematical model assumed 
an elastic homogeneous ice plate of infinite extent resting on incompressible inviscid 
fluid of constant depth. 

In this sequel paper we discuss a number of effects referred to but not studied in 
Paper I. Section 2 deals with a lateral stress imposed on the ice plate, and although 
we conclude that this is unimportant in practice the modified dispersion relation does 
have features of theoretical interest. In  8 3 we note that a uniform sea current under 
the ice also modifies the dispersion relation and hence the wave pattern, but the effects 
may be difficult to detect. Of greater significance is stratification in the underlying 
water which we discuss in $4 using a two-layer model. The internal-wave propagation 
that then occurs is an interesting classical matter of potential practical importance, 
especially as regards the energy of the wave system (cf. Lamb 1945; Garrett & Munk 
1979). 

2. Compressive stress on the ice 
Thermal strain, surface friction due to a prevailing wind, and water flow beneath 

the ice are three natural sources of compressive stress in a floating ice plate, and the 
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FIGURE 1. Diagram of floating ice plate. 

effects of such stress on wave propagation have been considered by Kerr (1979,1983) 
and Bates & Shapiro (1980). We consider the same model used by these authors - an 
infinite homogeneous ice plate of thickness h and density pi under lateral stress and 
resting on water of uniform depth H (see figure 1 ) .  We use a Cartesian coordinate 
system with (2, y) in the undisturbed lower plane surface of the ice plate z = 0, aa 
in Paper I. The small vertical deflection of the ice plate is denoted by q(x ,  y, t ) ,  and 
including the lateral stress term TV2y (compressive for T > 0), we adopt the modified 

(2.1) 
equation of motion: 

DV41 + TV2y +pi hytt = P -f@, y, t )  9 

where D = Eh3/[12( l -v2) ]  is the modulus of rigidity which depends sensitively on 
ice thickness h (as well as Young's modulus E and Poisson's ratio v), p is the water 
pressure at z = 0, f(z, y, t )  is the downward external stress exerted on the ice by the 
moving source, and V 2  = a2/az2 + a2/ay2 is the planar Laplacian operator. Assuming 
that the underlying water is incompressible and its flow is irrotational with velocity 
potential #(x, y, z,  t ) ,  from Bernoulli's theorem we have 

P = -P(A),-o--P9% 

DV47 + TV27 +Pi  h t  = - P ( A ) , - o  -w7 -f. 
so (2.1) becomes 

Unless otherwise stated, throughout this paper we adopt the parameter values of 
Paper I (for the ice at McMurdo Sound, Antarctica)-viz. E =  5 ~ 1 0 " N m - ~ ,  
h = 2.5 m, H = 350 m, and v = 3. The densities of ice and sea water may be taken 
to be pi = 917 kg m-3 and p = 1024 kg m-a, and the gravitational acceleration 
g = 9.81 m s-~. We shall find that the lateral stress T has to be very large to produce 
measurable effects on the wave propagation. 

2.1. Dispersion relation 
The dispersion relation for uniform plane waves, with 7 everywhere proportional to 
exp [i(k*x-at)], follows from (2.3) and the kinematic (non-cavitation) boundary 
condition 

thus setting f = 0 we get 

7t = (A),-0 = k tanh (kH) (4L-0; 

Dk5/p  - T k 3 / p  + gk , h ' = k .  h 
kh' + coth kH P 

0 2  = ( 2 . 4 ~ )  

As discussed in Paper I, there are three important lengthscales associated with the 
dispersion relation - a short scale, characterized by the (modified) ice thickness h'; 
a long scale, characterized by the water depth H; and an intermediate scale k&, 
characterized by the reciprocal of the wavenumber kmin at which the phase speed 
c = w/k  is a minimum, depending on the ice elasticity and gravity, and also the stress 
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Tin this context. At short wavelengths (kh' 2 O(1)) we have elastic-dominated waves 
appearing ahead of the source, and at long wavelengths (kH 6 O(1)) gravity waves 
behind the source, but the imposed stress might modify the important intermediate 
wavelengths. 

Provided the wavelength is large cowpared with ice thickness (kh' 4 l), we may 
neglect the ice acceleration term in the denominator of ( 2 . 4 ~ )  and use 

w2 = [nk"'''+l]gktanhkH, Pg (2.4b) 

as an approximate dispersion relation. The physical basis of this approximation is 
that the wave motion penetrates the water to a depth of order one Wavelength, so 
the inertia of this moving water layer will be much larger than the inertia of the 
relatively thin ice plate, For waves of intermediate length such that kmin h' 4 1 and 
kmin H % 1 (typically k&, x 50 m), the phase speed is 

so increasing the compressive stress T slows the wave. We recall that lowering the 
tension, or increasing lateral compression, reduces the speed of propagation of waves 
in a stretched string or membrane. The minimum phase speed (identified in Paper 
I, equation (2.5)) is moderated by the stress: i.e. 

This minimum phase speed is zero for T = 2(psB): 5: T, say, when kmin = (pg /D) f .  
We deduce from (2.4b) that for stability (0% > 0) the compressive stress may not 
exceed T,, which Kerr (1983) associated with buckling of an elastic plate. This 
situation is somewhat different from the classical buckling problem in that buckling 
is resisted not only by the elastic rigidity of the plate, but also by the underlying water 
which provides a further restoring force independent of wavelength. 

The group speed cg = dw/dk for intermediate wavelengths (kmin h' 4 1, Emin H % 1) 

(2.6) 
can be written 

which (for w > 0) is positive definite for T < i(20pgD)t= T,, say. In theory the group 
speed can be zero or even negative when (qg < T < q). Such stress values however 
are much higher than anticipated in the field (see below), so a stationary observer 
is unlikely to see the curious spectacle of wave crests moving in one direction, whilst 
the wave group remains stationary or even moves in the opposite direction. The 
phase and group speeds are plotted against wavenumber in figure 2(a,  b), with the 
representative parameters already mentioned, for zero stress and for the critical 
values qg and T,. Note that when T = T, and c has a zero at k, say, one can write 

=-[+-g-) 1 5 0  2 +g-& 9Te 
cg 20 p 

c = k f l k 2 - k $ l ,  

so the graph of c against k has a cusp at k,, and the graph of cg a discontinuity at 
that same point. For small compressive stresses there is a nearly linear decrease with 
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FIGURE 2. Variation of phase speed c and group speed cg with wavenumber k for different values 
of the lateral stress T: curve 1 ,  T = 0 ; curve 2, T = Tcg ; curve 3, T = qr. Note that the wavenumber 
scale is logarithmic. 

5 x 10-2 

m (m-l) 

F'IQURE 3. Wavenumber curves at supercritical source speed V = 45 m s-l, for various values of 
the lateral stress T: curve 1 ,  T = 0; curve 2, T = Tcg; curve 3, T = Tcr. 

Seifert & Langleben (1972) estimate that a 5-10 m s-l wind over 100 km of ice may 
produce a lateral compressive stress in the range 3 x 105-3 x lo4 N m-l, which 
corresponds to E < 1OODf so that, E 4 1 unless the ice is only centimeters thick. It 
would be surprising if thermal strain or water flow beneath the ice were to generate 
stresses of comparable magnitude. 

2.2.  Wavenumber curve and the wave pattern 
For a steady wave pattern relative to the source, at each point on a wave crest the 
phase speed must equal the component of the source velocity normal to the crest - i.e. 
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FIGURE 4. Wavenumber curves at critical lateral stress (2' = cr) for various source speeds: curve 
1 ,  V = 6 m s-l; curve 2, V = 20 m s-l; curve 3, V = 45 m 8-l. Note that the curves tend towards 
the circular arc k = (pg/D)f aa V+O. 

c = V cos/3, where /3 is the angle between the direction of the wavenumber vector 
k = (Z,m) and the source velocity V. Orienting the axes so that the source moves 
in the positive x-direction, the equation of the wavenumber curve corresponding 
to dispersion relation (2.4) is 

(2.7) 

Waves propagate in directions normal to the wavenumber curve. Features of the 
curve geometry, which depend on the source speed, produce an interesting variety 
of wave patterns (cf. Paper I). 

The possible variation of the wavenumber curve due to a lateral stress is shown 
in figure 3, where at supercritical source speed ( V  = 45 m s-l> c ~ , )  the wavenumber 
curves at the rather high critical stresses Z& and T, may be compared with th,e 
unstressed case T = 0. An increaae in the compressive stress results in a larger 
wavenumber curve (conversely, we found that a tensile stress reduces its size), and 
we note that the gravity-wave region becomes vertical when T = Tce, and the curve 
bends back towards the maxis for zs < T < T,. The wavenumber curve does shrink 
to a point as V+cmin (cf. Paper I), for T < T,. The curious theoretical behaviour 
shown in figure 4 corresponds to an earlier observation that for T = T,, cmin = 0 when 
k = @g/D)f ,  which is the radius of the circular arc towards which the wavenumber 
curves tend in the limit V+O. The wave patterns corresponding to the curves of 
figure 3 are shown in figure 5 (a-c). In figure 5 (a) the corresponding wavenumber curve 
(curve 1 in figure 3) has two points of inflexion on each side of the Z-axis, so each crest 
in the gravity-wave region has four cusps (cf. figure 6 c  in Paper I). In  figure 5 (b) the 
inner cusps now lie on the z-axis, since the corresponding point of idexion occurs 
where the wavenumber curve (curve 2 in figure 3) is vertical. In  figure 5(c) the inner 
cusps have moved to the opposite side of the x-axis since the outward normal at the 
point of inflexion A on the wavenumber curve (curve 3 in figure 3) has a positive 
m-component, and that at  B a negative m-component. When T = T,, the wavenumber 
curve tends to a circulararc centred at the origin as V+O, and the wave crests tend 

Dk4 - Tk' + p ~ -  ph' V??' -- pV212 coth kH = 0. 
k 
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FIGURE 5. Wave patterns for V = 45 m s-l and (a) T = 0, (a) T = !l&, (c) T = T,, respectively. 
( d )  Wave pattern for V = 6 m s-l and T = E,. 

to concentric circles. Figure 5 (d) shows a wave crest pattern (for a small value of V )  
which differs only slightly from this limiting form. Cusps have appeared correspond- 
ing to the point of inflexion C on curve 1 in figure 4. 

3. Flow underneath the ice 
Let us now ignore lateral stress in the ice, but suppose that the water beneath the 

ice flows uniformly with constant velocity U = (U,,  U,, 0)) so U+V$ is the perturbed 
velocity during wave motion. The linearized Bernoulli equation for the pressure at 
z = 0) 

replaces (2.2), so the modified dynamic equation of the ice plate becomes 

P = -m+ u.V$)z-o--PSrl9 

DV47 +pi hvtt +Pgq = -P($t + ~ V $ ) z - o - f .  (3.1) 
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3.1. Dispersion relation 
Including the relative flow, the kinematic (non-cavitation) boundary condition is 

qt + U'Vq = (4Z )z -o  = k tanh kH (#)z-o, 

hence the dispersion relation obtained from (3.1) is 

(3-2) 
Dk5 

P 
-++k-kh'd-(w-k.U)2 CothkH = 0. 

For the same reason as in 92, we neglect the ice acceleration term kh' w2 to obtain 

w D - ( Z  - -+1 ) gk tanhkH, (3.3) 

where wD = w - k* Uis the Doppler-shifted frequency relative to an observer moving 
with the water. Note that (3.3) is identical with the dispersion relation for still water 
(equation (2.6) in Paper I), except that wD replaces w .  This is to be expected since 
transforming to a frame of reference moving with the water is equivalent to imposing 
a translational velocity - U on the ice plate. This does not affect the elastic restoring 
term DV4q in (3.1) which is calculated by static methods, under the assumption that 
flexural waves are much slower than any purely elastic waves. 

The ice acceleration term in (3.1) is affected, involving a material derivative, but 
it is of course neglected in (3.3). We therefore expect the flow to otherwise influence 
slightly the dispersion at very short wavelengths (kh' 2 0(1 ) ) ,  when the relevant 
approximation to (3.2) is 

3.2. Wavenumber curve and the wave pattern 

In a frame of reference moving with the water, the transformed source velocity is 
V ,  = V- U. Choosing the x-axis in this frame to be parallel to V,, the equation of 
the wavenumber curve based on (3.2) is 

Dk4 

P 
-+gk-kh'[Z(U,+ V,)+mU,]2-(ZV,)2 CothkH = 0, (3.5) 

where now - U is to be interpreted as the transverse velocity of the ice plate. On 
setting m = - m, we observe that the wavenumber curve is no longer quite symmetric 
about the Z-axis - an effect of the anisotropy mentioned above. 

As shown in figure 6, for an observer moving with the flow, there is only a slight 
alteration of the wavenumber curve at short wavelengths even for a rather large 
relative value of the transverse velocity. To an observer on the ice, however, the wave 
pattern will no longer be aligned with the source velocity but rotated through an angle 

S =  tan-'( U * ) 
v-u, ' 

as shown in figure 7. Even for the very largest tidal currents (or order 1 m s-l) it  may 
be that neither effect would be easy to detect. 
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FIGURE 6. Slight anisotropy of the wavenumber curve due to a uniform flow under the ice, 
perpendicular to the source velocity. For curve 1, U, = 0 ;  curve 2, U, = 10 m s-l; and in each case 
the source velocity V = 50 m s-l. 

V 

FIGURE 7. Influence on the wave-crest pattern of a uniform flow under the ice normal to the source 
velocity. The pattern is now almost symmetric about the direction of V- U - the velocity of the 
source relative to the water - which is indicated by a dashed line. 

4. Water stratification 
In this section we neglect any imposed stress or sea currents, but suppose that the 

underlying water is stratified. Stratification may be caused by freezing or melting 
of the ice, and exhibits rather complicated seasonal variations (see e.g. Lewis & 
Walker 1970). For simplicity we adopt a two-layer model - a layer of density p1 
resting above a layer of density pz. In  the undisturbed state we denote the interface 
of the two layers by z = -Hl and the total depth to the bottom of the second layer 
by z = - H z ,  as shown in figure 8. This is similar to the model used by Lamb (1935, 
article 231) to describe fresh water from the land overlying sea water in estuaries or 
fiords. 

We again let ~ ( x ,  y, t )  represent the small deflection of the ice plate and introduce 
[(x, y, t )  to represent the small displacement of the internal interface between the two 
layers. We assume both layers are incompressible, with their irrotational motion 
described by the two velocity potentials y, z, t )  and $&, y, z, t )  respectively, 
which are related by the continuity of pressure condition (via Bernoulli equations) 

(4.1) Pl($lt + g E ) z - - H ,  = PA& +9E)2---H1, 
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FIGURE 8. Diagram of ice plate floating above two water layers. 

and the kinematic conditions 

5, = (#1 t ) z - -H,  = ( 9 2 2 ) 2 - - H , .  (4.2) 

DV*?I +Pi h t t  + g?I = -~l(#lt)z-O-.f* (4.3) 

The dynamic equation of the ice plate is of course 

The kinematic conditions at the ice-water surface and at the rigid bottom are 

?It = (#l,),-O, (#,z)z--H* = 0. (4.4a, b)  

4.1. Dispersion relation 
Assuming sinusoidal waves 7 = 7, exp [i(k*x-wt)] and 5 = 6, exp [i(k*x-wt)], we 
find the velocity potentials satisfying (4.4) must be of the form: 

#1 = (A coshb- iq ,  k-' sinh kz) exp [i(k*x-wt)], 

$2 = B cosh[k(z+H,)] exp [i(k*x-wt)], 

(4.5) 

(4.6) 

where the constants A, B and the internal amplitude 5, satisfy a system of three 
equations obtained from (4.1) and (4.2) : in matrix form 

B = -(io/k)qo coshkH, . I p1 cash kH1 -p2 cash k(H2--H1) g(p2-~1)/iw ] [] [ -(iw/k)P;ShhkH1 
sinh kHl sinh k(H2-H,) 0 

[ o  sinh k(H2 - Hl) io/k 

Solving this system of equations, we find in particular that 

iw 
#1 = ---01 k CoEihkz+shh kz)v,  (4.7) 

where we conveniently define 

and the ratio of the displacement amplitude at the ice-water surface to the amplitude 
at the internal interface is 

(4.9) -= 50 P1 

qo sinh kHl [pl coth kHl +pa coth k(H, - Hl) - gk@, -pl)/w2]. 

Note tha t  since [,/q0 is real and positive, the surface and interfacial waves are in 
phase. 
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The dispersion relation for uniform plane waves follows from (4.7) and the equation 

(4.10) 

The expression designated by p (cf. (4.8)) contains u2 terms, so dispersion relation 
(4.10) is a quadratic in u2. Solving for u2, we obtain the explicit quadratic roots 

(4.11) 

where writing h = 1 +Dk4/(plg) we have 
P =  p1+p2 CothkH cothk(H,-Hl)+kh'~,  cothkHl+p2 Cothk(H,-H,)], ( 4 . 1 2 ~ )  

& = gk[@,-p1) cothkHl+A(pl cothkHl+p, coth k(H,-H,))+kh'(p,-p,)], (4.12b) 

R = g2k2(p2 -pl) A .  (4.12 c) 
The two explicit quadratic roots (4.11) might have been expected since the system 
has virtually two degrees of freedom, involving both surface flexural (elasticgravity) 
waves at z = 0 and internal waves at  z = - Hl (cf. Lamb 1945). 

In  passing, we note that earlier results are limiting cases of dispersion relation 
(4.10) : 

(i) When p1+p2 or Hl+H2 we have p+coth kH,, and recover the classical 
dispersion relation for an ice plate floating on a uniform fluid of density p1 (Greenhill 
1887). With reference to (4.12) we note that R+O when p1+p2, so the two quadratic 
roots (4.11) reduce to w2 = &/P and w2 = 0; and we note that the term in R is also 
negligible when Hl -+ H,. 

(ii) In  the limit Hl+O we get 
P2 coth kH2-gk(P2-P1)lo2 

9 

P1 
P+ 

and from (4.10) recover the classical dispersion relation for an ice plate floating on a 
uniform fluid of density p,. 

(iii) From (4.12) we also note that the limit h+O (and hence D+O) yields the 
dispersion relations for waves at the free surface and at the internal interface of the 
two fluid layers, when there is no ice plate (cf. Lamb 1945). 

4.2. Approximate expressions for the dispersion relation 
For the various characteristic wavelength regimes described earlier, we now obtain 
useful approximate expressions for the two quadratic roots (4.1 1) of the dispersion 
relation. Once again there are three important lengthscales : the short lengthscale h' ; 
an important intermediate scale, k&,; and a long lengthscale, H, in this context. We 
continue to assume that the ice cover is relatively thin, so that h' << Hl < H,. 

Short wavelengths 
In the case of very short waves (kh' > 0(1)), (4.12) become respectively 

p = (1 +kh') (Pl+P,), 
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Since the elastic parameter D is very large (typically lo8), the term Q2 x D2k10 
dominates the discriminant in (4.11), so we may take a first-order binomial 
approximation to obtain 

(4.13) 

On substituting the short-wave approximations immediately above, we therefore 
have 

(1 + kh')-lDk6 

P1 
w t  x 9 

gk@2 - P1) wB_ x 
P1+ P2 

(4.14a) 

(4.14b) 

In  the limit kh' % 1 we see that (4.14a) reduces to the earlier dispersion relation for 
flexural elastic waves in ice floating on uniform fluid of density p1 (cf. Paper I). 
Equation (4.14b) describes gravitational internal waves (if p1 < p2) at the interface 
of the two superposed fluids of infinite extent (cf. Lamb 1945). We note that because 
the density difference of the two layers is typically rather small (Ip2-p11 4 p1,p2), 
the period of oscillation of the internal gravity waves can be very large compared 
with the period of the surface flexural waves. (In fact it emerges that the phase speed 
of the flexural waves w + / k  is generally much higher than the phase speed w - / k  of 
internal waves.) Finally we recall that elastic-dominated ice waves appear ahead of 
the source (cf. Paper I), whereas these internal gravity waves fall behind. 

Intermediate wavelengths 
For all but the shortest wavelengths, we again entirely neglect the kh' terms. Thus 

for waves of intermediate length ( k  = O(kmin)), suitable approximations for (4.10) are 

It has again been assumed that the depth is large compared with the wavelength, 
which may however now be comparable with the depth of the upper layer, i.e. 
kH2 9 1 but kH, = O(1). The binomial approximation (4.13) is again valid, so that 
for intermediate wavelengths we have the respective quadratic roots for flexural and 
internal waves : 

Dk6 p1 coth kHl +p2 1 + 00th kHl 
w: x -  

p1 pa coth k H l + p l + g k p , / p 2 + c o t h  kH,' 
(4 .15~)  

(4.15b) 

Equations (4.15) reduce to (4.14) if we set kH, = co, and neglect the gravity term 
gk in the case of (4 .15~) .  The stronger elasticgravity hybrid character of the flexural 
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waves is again evident. If the density difference is small (Ip,-p,l 4 pr,pe), (4.15) 
reduce to 

Dk5 
0: X - + g k ,  P1 

The earlier remark concerning the oscillation period or relative phase speed of the 
flexural and internal waves is again relevant. 

Long wavelengths 

mations for (4.10) are 
For long wavelengths, comparable with the total depth (kH, < O ( l ) ) ,  the approxi- 

P = p1 +pz coth kH, coth k(H,-  H , ) ,  

Q = gkp,[coth kH, + coth k(H,-  H , ) ] ,  

R = g2k2(P,-P1). 

Once again, the binomial approximation (4.11) is appropriate, so we obtain 

1 coth kH, + coth k(H,  - H,)  
(": "" [p, +p2 coth kH, coth k( H ,  - H,)  ' 

W: x gk 1 - 2  [coth kH, + coth k(H, - H1)]-'. ( 9 
(4 .16~)  

(4.16b) 

Thus for long wavelengths both the flexural and internal waves are gravity- 
dominated, and depend on the depth of both the upper and lower layers. If we set 
kH, = 00 in (4.16), we recover the approximations (4.15), on neglecting the elastic 
term. When H,  4 H,, ( 4 . 1 6 ~ )  reduces to the well-known dispersion for gravity waves 
on water of depth H,, i.e. w: = gk tanh kH,. 

4.3. Phase and group speeds 
In figure 9, the phase and group speed are plotted against wavenumber, for the 
flexural ( w + )  and internal (ow) waves respectively. We assume that the upper layer 
is salt water of density p1 = 1024 kg m-3, and the lower layer salt water of density 
p, = 1025.3 kg m-3, to model the water column beneath fast ice. A typical upper- 
layer thickness of order H ,  = 10 m should be representative, and we take the total 
depth H ,  = 350 m as before. Note that the phase and group speeds of the internal 
wavesare significantly less than thoseofthe flexuralwave at all wavelengths, attain their 
maximum in the long-wavelength limit, and decrease gradually as the wavelength 
decreases (i.e. as k increases). In  the long-wavelength limit (k -+O) ,  from (4.16b) we 
find that the common value of the phase and group speeds of the internal wave is 
[g(1 -p l /p2 )  (H, -H, )  H,/H,]k Differentiating this expression with respect to H,, we 
conclude that the phase and group speeds of the internal wave are maximum in this 
long-wavelength limit when H ,  = iH, ,  and this case is also represented in figure 9(b) .  
The phase and group speeds of the flexural wave represented in figure 9(a) are 
insensitive to stratification (cf. figure 2 of Paper I). 

4.4. Amplitude ratios 
We may further assess the importance of internal waves, with respect to the response 
of the ice-water system at supercritical source speeds ( V  > cmin), by considering the 
relative amplitude of internal to flexural waves defined by (4.9). 
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FIGUFGE 9. (a) Graphs of phltse speed c (-) and group speed err (----) against wavenumber k 
for flexural waves with stratified water. These are insensitive to water depth HI. (b) Corresponding 
graphs for the internal-wave branch. Note that the wavenumber scale is logarithmic. 

Let us first consider the w+ (flexural-wave) case, for which it is convenient to use 
the approximations obtained in the last section. In the short-wavelength limit, we 
invoke (4.14a) to get - 

to 2ple-kH1 

9 0  Pl+PZ 
-= 

For waves of intermediate length, we use (4 .15~)  to find 

p1 cosh kHl +pa sinh kH, ' 
_ -  P1 
qo 
5 0  - 

(4 .17~)  

(4.17 b )  

and from ( 4 . 1 6 ~ )  for wavelengths we have 

(4.17 c )  

Obviously, (4.17) are self-consistent, in that (4 .17~)  reduces to (4.17 b )  which reduces 
to (4.17a), as the wavelength decreases (i.e. as k increms). If the upper layer is 
shallow (Hl << Ha) we have to/qo+ 1 in the long-wavelength limit, cf. (4 .17~) .  This is 
as anticipated, since surface waves typically penetrate to a depth of the order of one 
wavelength. The short-wavelength limit is dominated by the exponential factor, so 
that t o / ~ o + O ,  i.e. the disturbance is strongly localized at  the ice-water surface. 

The amplitude ratio in the w -  (internal-wave) case can be expressed (cf. Appen- 
dix A): 

-=  6 0  P1 
q0 sinh kH&, coth kBl +pa coth k(H2 - Hl)] ' 

_ -  to - - ' +Dk4'4/(p1 ') Lol coth kHl +pa coth k(Ha -Ill)] sinh kHl 
90 Pa-Pi 

+coshkBi+kh' sinhkH,. (4.18) 

Inthelimit k+Owe have[o/~l+l -pl/(pz-pl), sowhenthedensitydifferenceissmall 
even the longer-wavelength internal waves will not penetrate to the ice-water surface. 
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F'ICWRE 10. Representative wavenumber curve for stratified water at supercritical speed ( V > cmin). 
The flexural wave (roughly circular) branch is largely unaffected by the stratification (cf. figure 4, 
Paper I). The section of the internal-wave branch shown is approximately straight on each side of 
the Z-axis. (As k+ to the internal branch becomes parallel to the m-axis.) 

(We also have co/qo+- 00 in the short-wavelength limit, i.e. the surface response is 
negligible in this case too, and the disturbance is strongly localized at  the interface 
between the water layers.) 

4.5. Wavenumber cume and wave p a t t e r n  
The condition for a steady wave pattern is as before ( c  = V cos/3), but now there can 
be two distinct branches of the wavenumber curve since there are two characteristic 
frequencies (w+ and w - ) .  The two branches are shown in figure 10, for source speed 
V = 25 m s-l. In  the previous three subsections we noted that the surface dispersion 
is insensitive to stratification, so we anticipate that the corresponding branch of the 
wavenumber curve has the familiar approximately circular shape shown, implying 
that the flexural elastiegravity waves in the ice radiate in all directions from the 
source (cf. Paper I). The other branch of the wavenumber curve in figure 10 
(corresponding to w - )  is not closed, at  least in the absence of surface tension (cf. 
Longuet-Higgins 1977), so the internal waves radiate only into a narrow region 
behind the source. For source speeds less than the minimum phase speed of flexural 
waves ( c , ~  x 22.5 m s-l for the physical parameters assumed), there can be no 
surface-wave branch of the wavenumber curve, i .e .  only the internal branch persists, 
so the source excites only internal waves and the flexural response is  static. For these 
lower speeds, the form of the internal wave pattern depends crucially on the 
behaviour of the wavenumber curve close to the origin, which we proceed to analyse 
further. 

Assuming that H ,  -4 H2,  the equation describing the internal branch of the 
wavenumber curve in the long-wavelength limit (i.e. close to the origin in the 
(2, m)-plane) follows from (4 .16b) :  

(V  c0s/3)~ = gHl 1 -fi (1 - i k 2 q ) ,  (4.19) 

where we have used the small argument expansion, tanh kH, x kHl( 1 - $ k 2 e ) .  
Defining VZ,, = gHl(l -p l /p2 ) ,  if V < V,, we can re-express (4.19) as 

( P,> 
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m (rn-l) I (m-1) 

FIGURE 11. Behaviour of the internal branch of the wavenumber curve near the origin for 
source speeds close to Ki: curve 1 ,  V > Ki; curve 2, V = &; curve 3, V < K.. 

Here k and /3 are polar coordinates, where k, is the point of intersection of the 
wavenumber curve with the Z-axis when /3 = 0. If V = Ki, then (4.19) becomes 

4 3  sin/3. k =  
Hl ' 

while for V > Vci we rewrite (4.19) as 

, /3, = cos-1 (+), 3 vz( cosa /.? - COS2 Po) 
(Hl V,J2 

k2 = 

which represents a pair of curves intersecting at the origin, each making an angle 
Is, with the Z-axis. This behaviour near the origin is very similar to that of 
the unstratified wavenumber curve when V is close to the critical speed V ,  = (gH)t 
(see Paper I (3.7) and (3.8)). In this case however the critical speed is much 
less; V,, = [gHl(l -pl/p2)lf < 1 m 8-l for the internal wave, compared with 
V, = 58.5 m s-l for the surface wave. From the short-wavelength approximation 
(4.14b) we find that for small source speed V the point of intersection of the 
internal-wave (0-)  branch with the positive Z-axis is given by 
Z = (g/V) (p2-pl)/(pl+p,). This point of intersection goes off to infinity as V+O. 
Figure 11 illustrates this behaviour by showing internal branches of wavenumber 
curves near the origin, for source speeds close to V,,. 

In figure 12 (a)  V,, < V 4 cmin and the normal directions to the corresponding 
wavenumber curve (cf. figure 11) all lie within the narrow range n-8, < p <  x+/3,, 
so the wave pattern is confined to a triangular region behind the source. (This is very 
similar to the internal-gravity-wave pattern generated by steady vertical motion of 
a sphere through uniformly stratified fluid, shown in Lighthill 1978; figure 106.) In 
figure 12(b) V < V,, and the wavenumber curve is very similar to that for gravity 
waves on deep water (see Lighthill 1978, figure 101), so the wave pattern is rather 
like the Kelvin ship-wave pattern. 
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FIGURE 12. Typical internal-wave-crest patterns. In (a) V,, < V 4 cmin and the corresponding 
wavenumber curve has only an internal branch. In (b) V c V,, and the corresponding wavenumber 
curve (curve 3 in figure 11, for the behaviour near the origin) is similar to that for gravity waves 
on deep water, with one point of inflexion. Thus the wave-crest pattern is similar to the Kelvin 
ship-wave pattern. 

4.6. Restriction on the loading function 
A complication arises because the internal branch of the wavenumber curve is 
unbounded, in the absence of surface tension. From (4.14b) we see that when k is large, 
the approximate equation for C, is 

9‘ 9’ = dP2 - P1) k =  
v 2  cos2p’ PZ+Pl ’ 

(4.20) 

which is identical with the corresponding equation for gravity waves on deep water 
(see Lighthill 1978, figure 101). 
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For a steadily moving source the loading function f can be written in the form 
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f(z, y, t )  = F(x- vt, Y),  

and at large distances from the source the displacement 7 is given by the asymptotic 
formula (cf. (3.6) in Paper I): 

(4.21) 

Here is the Fourier transform of F and 

B(Z,m) = Dk4+p1g-p1 h’TnZa-plpP12/k, 

where /I is defmed by (4.8) with o replaced by VZ. The wavenumber k, = (Zo,rno) 
corresponds to that point P, on the wavenumber curve c k  which radiates waves in 
the direction considered, K, is the curvature of c k  at P,, and aB/an is the derivative 
of B at Po in the direction normal to c k .  If there is more than one point Po on the 
wavenumber curve which radiates waves in the given direction, then the surface 
displacement is the sum of contributions of the form (4.21). 

Using the limiting form (4.20) of the internal-wavenumber curve, we find that the 
contributions to 7 for large k have amplitude 

(4.22) 

The ratio of internal to surface wave amplitude f;,/q0, is given by (4.18), and is 
O(k4ekH1) as k + a ,  so it follows from (4.22) that 

go = o[P(z,, mo) dekH11 as t-t 00. (4.23) 

This exponential growth for large k can be counteracted in (4.23) only by a 
corresponding exponential decay in p(Z, m ) ,  i.e. go will remain finite only if 

P = o(k-!e-kH1) as k - t c o .  (4.24) 

If the loading function is such that (4.24) is not satisfied then our analysis breaks 
down, since the internal-wave amplitudes to required for the steady wave pattern 
become infinitely large as k -t 00, and the small-amplitude assumption would be 
violated. In  practice, if a moving load not satisfying (4.24) were applied, the 
internal-wave amplitudes would grow with time from the instant of application until 
further growth was prevented by nonlinear effeots or damping. To ensure that (4.24) 
were satisfied we could choose a normal distribution loading function of the form 

where 1M is the maas of the load, and b a constant representing its width. Another 
more realistic choice of loading function, based on approximating the aircraft wing 
by a uniform line vortex and its image in the plane z = 0 (see Davys 1984), is 

(4.25) 

where the constant b measures the lateral extent of the load, and is of order the 
aircraft height. The loading function (4.23) will yield finite f;, provided b > Hl (cf. 
(4.24)). 
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5. Wave drag on a moving source 
It is well known that an important component of the drag on a ship is associated 

with the power loss in exciting surface or other waves. On entering an estuary in which 
the water is stratified, a ship may experience a substantial drag even if no surface 
waves are evident, due to the excitation of internal waves (e.g. Lamb 1945). In this 
section we consider the wave drag on a load moving over an ice plate, when the 
underlying water is stratified. 

The mean energy density W of a plane wave (averaged over one wavelength) is 
the sum of the mean potential energy W, and mean kinetic energy W,. The elastic 
potential energy of the bent ice plate is +Ilk4 171, (see Landau & Lifshitz 1959, p. 45) 
and the gravitational potential energy associated with the upper water surface 
+pl g (see Lighthill 1978, p. 212). (The absolute value signs are used on the usual 
understanding that r ]  is a complex quantity proportional to ei(ks-ot) say, for a plane 
wave in the 2-direction, whose real part represents the surface displacement.) 
Similarly the gravitational potential energy associated with the interface z = - H I  
is a@,-p,) g It],, so that the total mean potential energy is 

Wp = W E 4  +pl 9 )  1712 + i(p2 -A) g I l l2 .  
It is shown in Appendix B that there is equipartition of mean kinetic and potential 
energies, i.e. that W, = W,, so it follows that the total mean energy density is 

where 

Note that we have ignored the small kinetic energy of the ice plate, consistent with 
neglecting the ice acceleration term in the dispersion relation. For unstratified water 
Wo is given by just the first two terms of (5.2). 

Thus the power P required to maintain the steady wave system, or the flux of 
energy radiated away from the source, is given by 

(5.3) = lcF t %  1712 (cg - v) deF Y 

where C, is a circle of large radius surrounding the source and moving with it, A is 
the outward unit normal vector to C,, and ds, is an element of arc length along C,. 
Now we can write 

dS, = rd8, 

where (r,  0) are polar coordinates in the co-moving (2, y)-plane. The angle 8 gives the 
direction in which waves are radiated from the source, and is equal to the angle 
between the normal to the wavenumber curve c k  and the Z-axis, so 

d0 
F -  ds 

ds - r-ds = r K d s ,  

where s measures distance along c k .  Since the normal A to C,, the direction in which 
waves are propagated, is parallel to the relative group velocity cg - V, on combining 
(5.1), (5.3) and (4.21) we obtain 

(cf. Lighthill 1978, equation 299). 
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There is an important complication - the wavefield does not always consist of single 
plane waves. If the wavenumber curve has the same normal direction at two separate 
points, then two plane waves of different wavenumber will be radiated in that 
direction, and the displacement 7 will be a superposition of these two waves. This 
will always occur with stratified water when c k  has two branches, for their directions 
must coincide over certain sections (see figure lo), and can also occur even for 
unstratified water, if c k  has points of inflexion (see Paper I). In any regions where 
two or more plane waves are present, (5.1) must be modified so that the right-hand 
side is some quadratic form in the various amplitudes. To avoid such complications 
we have carried out calculations only in the two situations where wave overlapping 
does not occur: (a) the unstratified case with cmin < V < V, = 37.5 m s-l (see Paper 
I) so that no points of inflexion occur, and (b) the case of stratified water with 
V,, < V < cmin so that only the internal branch of the wavenumber curve is present 
and again no points of inflexion occur. 

In case (a) we chose a point load Mg(M = lo4 kg for a typical aircraft), so that 

and found that the small value of the power ( x  10-1 W) varied only slightly with 
V. 

In case (b) the loading function P(z,y) must satisfy restriction (4.24) for finite 
internal-wave amplitudes, if the power integral (5.4) is to converge. We chose the 
loading function (4.25) with H I  = 10 m and found that for fixed V, as the lengthscale 
b tended to H ,  from above, the power increased rapidly as the integral (5.4) became 
more slowly convergent. Choosing a fixed value of b = 15 m (large enough to ensure 
convergence), we found a rapid increase in power as V tended to the lower limit V,, 
from above. This corresponds to the observed behaviour of ships on stratified water 
in fiords, where the drag is found to reduce significantly if the speed be raised above 
a certain value. 

6. Conclusions 
Compressive stress in the plane of a floating ice plate is unlikely to have any 

significant effect on the propagation of waves due to a moving load. We expect only 
a slight reduction in the observed phase speeds, and in particular in the critical speed 
cmin which the source speed V must exceed for a dynamic rather than a static response 
(e.g. Squire et al. 1985). A flow underneath the ice re-orients the wave pattern towards 
symmetry about the direction of the source speed relative to the water, and 
introduces truly anisotropic dispersion only for wavelengths comparable with the ice 
thickness. 

If the underlying water is stratified, a moving load excites internal waves in the 
water in addition to any response in the ice. For source speeds greater than cmin both 
flexural and internal waves are generated, but a slower source generates only internal 
waves. A very slow source may experience an anomalous drag due to these internal 
waves, analogous to the ‘ abnormal resistance ’ occasionally experienced by ships 
entering fiords in which the water is stratified (Lamb 1945). In  such circumstances 
the drag is extremely sensitive to the loading function (whereas for unstratified water 
it is quite insensitive), and the internal-wave amplitudes may grow in time until 
limited by nonlinear effects or damping. 

I1 SLM 180 
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We are grateful to V. Squire for comment on polar conditions relevant to the 
calculations in this paper. 

Appendix A. Amplitude ratio 
The amplitude ratio (4.9) is 

(A 1 )  -= 5 0  Pl 
7 0  sinh kHl(pl c1 C2-gkPd/oa) 

if we write c1 = cothkH,, c2 = cothk(H,-H,), and Pd = p2-p1. In the w -  (internal- 
wave) case, the bracketed term in the denominator of (A 1) vanishes identically for 
c1 = c, = 1, which is the usual approximation at  short wavelength. Thus in this case 
we retain the exact form of the quadratic root (cf. (4.11)), so that 

w:a = &+ (&*-4PR)i 
2R 9 

whore with h = 1 + Dk4/(p lg)  we have 

p = P1 +P2 c1 c2 + k W 1  c1 +P2 CZ), 

= gkLA(pl c1 +pz +Pd(% + kh’)l ,  
R = gak2hpd, 

It immediately follows that 

where 

Thus from (A 2) and (A 3) we write the bracketed term in the denominator of (A 1) 

since la( 4 1 if lpdl 4 pl,pa. Thus (A 1) becomes 

7 0  Pd 
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Appendix B. Proof that W, = W, 
The total kinetic energy T over one wavelength is given by 

n 

where S, is the interior of ABCD (the upper fluid layer) and S, the interior of CDEF 
(the lower fluid layer) as indicated in figure 8. We use the usual identity 
(V$), = V-(+V$) for harmonic functions $ to re-express (B 1) in terms of surface 

where ds denotes an element of arc length along the boundary. Contributions from 
the vertical parts of the boundary cancel because of periodicity, and contributions 
from the bottom z = -H, vanish by virtue of (4.4b). Use of the kinematic surface 
conditions (4.2) and ( 4 . 4 ~ )  in (B 2) gives 

(B 3) 

are both proportional to ei(kzut) , (4.3) with 

1 
T = iP1 I, ,  $1 rlt ds + 5 s,, @Z$Z -P1 5t ds. 

For plane waves in which the $ and 
f = 0 shows that on AB 

P k 4  + P19) rl 
p d 1 =  i" 9 

where as usual we have ignored the ice acceleration term. Since the average (ab)  over 
one wavelength of two complex quantities a, b each proportional to ei(kz-wt) is 
4Re (ab*), where the asterisk denotes the complex conjugate, we !ind using (B 4) that 

(P, rlJ = W k 4  +pl 8)  Irll'. 
In a similar way we can use (4.1) to show that 

<@242-P1$1) E J  = 4@2-P1)fI 1512, 

wK = (T> = Wk4+p1g) I7l*++a@,-~,) 15K 

so it follows that the mean kinetic energy is 

which is identical with the expression for the mean potential energy. 
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